Noncommutative matrix factorizations with an application to skew exterior algebras

نویسندگان

چکیده

Theory of matrix factorizations is useful to study hypersurfaces in commutative algebra. To noncommutative hypersurfaces, which are important objects algebraic geometry, we introduce a notion factorization for an arbitrary nonzero non-unit element ring. First show that the category graded invariant under operation called twist (this result generalization by Cassidy-Conner-Kirkman-Moore). Then give two equivalences involving and totally reflexive modules analogous famous Eisenbud hypersurfaces). As application, describe indecomposable over skew exterior algebras.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Linear Algebras Associated with Factorizations of Noncommutative Polynomials and Noncommutative Differential Polynomials

We study certain quadratic and quadratic linear algebras related to factorizations of noncommutative polynomials and differential polynomials. Such algebras possess a natural derivation and give us a new understanding of the nature of noncommutative symmetric functions. Introduction Let x1, . . . , xn be the roots of a generic polynomial P (x) = x n + a1x n−1 + · · ·+ an over a division algebra...

متن کامل

Construction of Some Algebras Associated to Directed Graphs and Related to Factorizations of Noncommutative Polynomials

This is a survey of recently published results. We introduce and study a wide class algebras associated to directed graphs and related to factorizations of noncommutative polynomials. In particular, we show that for many well-known graphs such algebras are Koszul and compute their Hilbert series. Let R be an associative ring with unit and P (t) = a0t +a1t +· · ·+an be a polynomial over R. Here ...

متن کامل

Learning with matrix factorizations

Matrices that can be factored into a product of two simpler matrices can serve as a useful and often natural model in the analysis of tabulated or highdimensional data. Models based on matrix factorization (Factor Analysis, PCA) have been extensively used in statistical analysis and machine learning for over a century, with many new formulations and models suggested in recent years (Latent Sema...

متن کامل

Tensor Algebras, Symmetric Algebras and Exterior Algebras

We begin by defining tensor products of vector spaces over a field and then we investigate some basic properties of these tensors, in particular the existence of bases and duality. After this, we investigate special kinds of tensors, namely, symmetric tensors and skew-symmetric tensors. Tensor products of modules over a commutative ring with identity will be discussed very briefly. They show up...

متن کامل

Riordan group approaches in matrix factorizations

In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2021

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2021.07.012